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A vast effort has gone into constructing analytical approximations to
oscillatory systems that can be modelled by equations taking the form

�x� x � eF�x, _x�, �1�
where the parameter e is small and F is a polynomial function of its arguments.
A summary of many of these techniques is given by Mickens [1]. This paper
presents preliminary results on a class of non-linear oscillators for which the
frequency is a function of the velocity, i.e.,

�x� f � _x�x � 0 �2�
Note that for the case where f is a positive constant, the angular frequency, o, is
given by o2= f. A search of the research literature indicates that no systematic
study has been done on this general class of non-linear oscillators. Several
important dynamical systems modelled by equation (2) include nerve conduction
[2], rapid directional solidi®cation of a dilute binary alloy [3], and the relativistic
harmonic oscillator [4]. The a priori absence of a small parameter in equation (2)
means that the usual perturbative procedures [1] cannot be applied. However, as
will be presented below, the application of methods from the qualitative theory
of differential equations [5, 6], i.e., a phase plane analysis, can provide valuable
information on the existence of periodic and other types of solutions. In the
work to follow, it is assumed that

f �0� > 0: �3�

The two dimensional system equations for equation (2) are [5, 6]

dx=dt � y, dy=dt � ÿ f �y�x: �4�
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As a consequence, the trajectories in the (x, y) phase space are given by the
solutions to the following ®rst order differential equation

dy=dx � ÿ f �y�x=y: �5�
Examination of equations (4) and (5) leads to three conclusions:
(1) There exists a single ®xed point or equilibrium state located at ��x, �y� � �0, 0�.
(2) Equation (5) is invariant under the transformation

Ty : x4ÿ x: �6�
This means that all trajectories in phase-space have a re¯ection symmetry in the
y-axis.
(3) The differential equation (5) is separable and thus can in principle be
integrated. The corresponding ®rst integral [7] is�y

0

w dw

f �w� �
x2

2
� E � constant: �7�

This last equation can be interpreted as the energy of a harmonic oscillator for
which the kinetic energy is given by

KE �
�y
0

w dw

f �w� �
y2

2f �0� �O�y3�: �8�

In other words, equation (2) represents a non-linear harmonic oscillator where
the potential energy is the usual expression [7]

PE � x2=2, �9�
but the kinetic energy is modi®ed to the form given in equation (8). Of major
signi®cance is the fact that all closed curves of equation (7) correspond to
periodic solutions [5, 6, 7].
In addition to the ®xed point at ��x, �y� � �0, 0�, equations (4) have special

solutions which are a consequence of f (y)=0 having possible real zeroes.
Denote these zeroes by fy�k : k � 1, 2, . . . , Kg, i.e.,

f �y�� � 0: �10�
It follows that

xk�t� � y�kt� Ak , yk�t� � y�k , �11a, b�
where the Ak are arbitrary constants, are solutions. Thus, the (x, y) phase plane
is separated into a number of regions, strips parallel to the x-axis, each of which
corresponds to a different type of solution. Since different solutions cannot
intersect except at ®xed points [8] and since y(t)= y�k are solutions which de®ne
the boundaries of these regions, it follows that trajectories that start in a
particular region are con®ned to that region. Only the solutions in the region
containing the origin are periodic since any periodic solution or closed trajectory
must enclose a ®xed point [8].
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The above rather abstract analysis will now be illustrated by considering a
particular example of equation (2),

�x� �1� _x�nx � 0, �12�
where n is a positive integer [2, 3]. (The relativistic harmonic oscillator is also of
the form given by equation (2); however, its detailed analysis is presented in
Mickens [4].) The system of equations are

dx=dt � y, dy=dt � ÿ�1� y�nx, �13�
and the trajectories in phase space are solutions to

dy=dx � ÿ�1� y�nx=y: �14�
There are two cases to consider, n=even and n=odd. However, ®rst note that
equation (13) has the ®xed point ��x, �y� � �0, 0�, and the exact special solution

x�t� � ÿt� A, y�t� � ÿ1, �15�
where A is an arbitrary constant. Thus, the phase plane is separated into two
regions: y>ÿ1 and y<ÿ1, with y=ÿ1 giving the boundary. Since the ®xed
point lies in the region y>ÿ1, it is only possible for periodic solutions to exist
there. This can be easily demonstrated using the concept of null clines [5, 6].
Null clines are curves along which the slope dy/dx, of trajectories in phase space,
is either zero or unbounded. For equation (14), they are given by

dy=dx � 0 : x � 0 or the y-axis, and y � ÿ1; �16a�

dy=dx � 1 : y � 0 or the x-axis: �16b�
Figure 1 shows the null clines and the sign of dy/dx in the six regions that the
phase space is divided by the null clines. For n=even, the sign of the derivative
is the same for y>ÿ1, however, they differ for y<ÿ1. Using the same
arguments as Mickens and Semwogerere [9], it can be shown, for any positive
integer n, that all trajectories that initiate in the phase-space region, y>ÿ1, are

Figure 1. The sign of dy/dx in the six regions that the phase plane is divided by the null clines:
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periodic, while those that lie in y<ÿ1 are non-periodic and may become
unbounded. Figure 2 gives typical trajectories near the origin for the two cases
n=even and n=odd. Trajectories starting far from the origin, in the region
y>ÿ1, are distorted to a pear-like shape.
The general dif®culty in considering particular cases of equation (2), for

example equation (12), is the lack of methods to calculate good analytical
approximations to the periodic solutions. The major problem is the lack of a
small parameter; thus, the usual perturbation procedure cannot be used [1, 10].
It is also of interest to note that the application of the method of harmonic
balance (at least in the rational formalism [5, 11]) does not lead to a consistent
result for an approximate solution to equation (12) with n=1. Future work will
consist of ®nding additional oscillatory systems having velocity dependent
frequencies and devising analytical procedures for calculating analytical
approximations to the corresponding periodic solutions.
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